

CWE-Top-25 SecurityReport
June 20 2017

Sec_App
Version: My Version

PURPOSE OF DOCUMENT:

The purpose of this report is to provide an objective assessment of the health of the
application. The primary audience for this report are development and executive teams who
are responsible for Training_82.

2 Assessment Report for training_82

RevisionHistory

Version Date Created Comment
1.0 MM/DD/YY User_Name

Generated with 1.5.0.0

3 Assessment Report for training_82

Table of Contents

1. Executive Summary .. 4

1.1. Application Characteristics ... 4

1.2. Assessment Highlights ... 4

2. Assessment Approach Overview .. 5

3. How Can Technology Address Application Quality Challenges? 7

3.1. Potential Points of Failures: Critical rules ... 8

3.2. Potential Points of Failures: Transaction wide Risk Index 8

3.3. Potential Point of Failures: Propagated Risk Index .. 9

4. Measures of Security .. 10

4.1. Top 25 CWE Rules .. 10

4.2. Technical Criteria ... 10

4.3. Top Non Critical Violations ... 11

5. Appendix: Understanding Quality Indicators, Quality Rules 12

6. Appendix: Importance of measuring all layers of an application 13

6.1. Bypassing the Architecture .. 13

6.2. Failure to Control Processing Volumes .. 13

6.3. Application Resource Imbalances .. 13

6.4. Security Weaknesses .. 13

6.5. Lack of Defensive Mechanisms ... 14

4 Assessment Report for training_82

1. Executive Summary

This Application Assessment evaluates the overall health of the Training_82 application.

Training_82 is a small application and has a good quality with a Total Quality Indicator (TQI) of 3.48
on a scale of 4. Each of the additional health metrics and their scores along with the other facts
about the application are identified below.

1.1. Application Characteristics

1.2. Assessment Highlights

TOP 5 TECHNOLOGIES

Name LoC

JEE 172,995

TECHNICAL SIZE

Name Value

kLoC 173

 Files 3,028

 Classes 3,685

SQL Art. 0

 Tables 0

JEE
172,995

STATISTICS ON VIOLATIONS

Name Value

Critical Violations 2,074

 per File 0.68

 per kLoC 11.99

Complex Objects 119

 With Violations 70

Rule Name #

Violations
Close the outermost stream ASAP 569

Avoid transactions with database resource open

capability but without the associated close capability 332

Avoid transactions with too many severe Programming

Practices - Error and Exception Handling issues along the

path 272

Avoid using Fields (non static final) from other Classes 193

Avoid empty catch blocks 170

Close database resources ASAP 155

CWE-134: Avoid uncontrolled format string 99

CWE-89: Avoid SQL injection vulnerabilities 68

Never exit a finally block with a return, break, continue,

or throw 59

CWE-73: Avoid file path manipulation vulnerabilities 58

5 Assessment Report for training_82

2. Assessment Approach Overview

This assessment is an effort to determine the overall health
of the application and identify any risks that may be inherent
within the application. The assessment determines whether
the application is constructed according to industry best
practices, follows best practices for software engineering,
and is maintainable.

This assessment is focused solely on the source code and
database structure with no view to functionality provided by
backend services.

The assessment leverages the CAST Application Intelligence
Platform (AIP), the leading automated code analysis platform,
with coverage of all major development tools and languages.
CAST AIP automatically scans and analyzes all of the source
code and database elements that are part of an enterprise
system. CAST AIP applies over 1,000 metrics based on
standards and measurements developed by the Software
Engineering Institute (SEI), International Standards
Organization (ISO), Consortium for IT Software Quality (CISQ),
and Institute of Electrical and Electronics Engineers (IEEE).
These metrics objectively measure software quality.

The primary Application Health Factors that are addressed
follow on the next page.

6 Assessment Report for training_82

Health Factor Description Example business benefits

Robustness Attributes that affect the
stability of the application
and the likelihood of
introducing defects when
modifying it

• Improves availability of the business function or service

• Reduces risk of loss due to operational malfunction

• Reduces cost of application ownership by reducing rework

Efficiency Attributes that affect the
performance of an
application

• Reduces risk of losing customers from poor service or response

• Improves productivity of those who use the application

• Increases speed of making decisions and providing information

• Improves ability to scale application to support business growth

Security Attributes that affect an
application’s ability to
prevent unauthorized
intrusions

• Improves protection of competitive information-based assets

• Reduces risk of loss in customer confidence or financial
damages

• Improves compliance with security-related standards and
mandates

Transferability Attributes that allow new
teams or members to quickly
understand and work with an
application

• Reduces inefficiency in transferring application work between
teams

• Reduces learning curves

• Reduces lock-in to suppliers

Changeability Attributes that make an
application easier and
quicker to modify

• Improves business agility in responding to markets or
customers

• Reduces cost of ownership by reducing modification effort

7 Assessment Report for training_82

3. How Can Technology Address Application Quality
Challenges?

The quality attributes of an application can be characterized by the quality attributes of its component parts no

more than the attributes of a molecule can be characterized by the attributes of its constituent atoms. Since

high quality components do not equate to a high quality system in any field of engineering, code quality,

although necessary, is not sufficient to ensure high quality applications. Organizations need the help of

application quality diagnostic tools which can discover inter-component issues and measure the internal quality

of the application across its tiers.

There are numerous commercial, freeware, and open source tools available that measure code quality specific

to a programming language and are often integrated into Integrated Development Environments (IDEs). These

tools are becoming standard components of every developer’s toolset since they provide quick feedback during

the coding and unit test process. However, these tools are not sufficient to address application quality since they

cannot evaluate interactions across the various languages, technologies, and tiers of an application.

Technology that measures application quality analyzes the integrated software produced by a build once the

code is checked into a central repository by all the developers. In addition to analyzing each component,

application quality technology analyzes their interactions for the types of problems described in earlier sections.

Moreover, application quality trends can be compared across builds or releases to monitor the progress against

application quality objectives and evaluate the risks posed by the application.

Application quality measurement tools provide several benefits for both the development team and

management:

• Visibility across application(s): Consistent and continuous analysis of all core business applications
provides executives with the metrics and information needed to better manage their portfolio of
applications and projects.

• Analysis of the internal quality of an application: Reviewing the integrated software system for quality
in order to detect architectural and structural problems that hide in interactions between tiers,
provides application or project managers with continual status about application quality and risk.

• Team performance: Since a detailed knowledge of the whole system is usually beyond any individual
developer’s capabilities, analyzing application quality helps improves developer skills, the team’s
breadth of application knowledge, and the efficiency of team performance.

A dynamic business environment, new technology, and multiple sourcing options, amplify the complexity of

business application software. Since even the most talented developers can no longer know all the nuances of

all the different languages, technologies, and tiers in an application, their capability needs to be augmented by

automated tools to evaluate the entire application. Without such assistance, defects hidden in the interactions

between application tiers will place the business at risk for the outages, degraded service, security breaches,

and corrupted data that are caused by poor quality applications.

8 Assessment Report for training_82

3.1. Potential Points of Failures: Critical rules
The CAST AIP quality model automatically assesses the application and identifies key issues in the application

through a weighted aggregation of more than 1,000 rules across different technologies. The list below shows

the various rules where a violation which can create abnornal behavior during the execution of the application

has been identified.

TOP 10 CRITICAL VIOLATIONS

Rule Name # Violations

Close the outermost stream ASAP 569

Avoid transactions with database resource open capability but without the associated close

capability

332

Avoid transactions with too many severe Programming Practices - Error and Exception Handling

issues along the path

272

Avoid using Fields (non static final) from other Classes 193

Avoid empty catch blocks 170

Close database resources ASAP 155

CWE-134: Avoid uncontrolled format string 99

CWE-89: Avoid SQL injection vulnerabilities 68

Never exit a finally block with a return, break, continue, or throw 59

CWE-73: Avoid file path manipulation vulnerabilities 58

3.2. Potential Points of Failures: Transaction wide Risk Index

Transaction wide Risk Index (TwRI) is an indicator of the riskiest

transactions of the application. The TwRI number reflects the

cumulative risk of the transaction based on the risk in the individual

objects contributing to the transaction; in the below list the focus is on

the efficiency of the application. The TwRI is calculated as a function of

the rules violated, their weight/criticality, and the frequency of the

violation across all objects in the path of the transaction. TwRI is a

powerful metric to identify, prioritize and ultimately remediate riskiest

transactions and their objects.

Potential Points

Potential Points

Transaction Entry Point TRI

org.owasp.benchmark.testcode.BenchmarkTest00941 280

org.owasp.benchmark.testcode.BenchmarkTest00332 278

org.owasp.benchmark.testcode.BenchmarkTest00334 278

org.owasp.benchmark.testcode.BenchmarkTest00592 278

org.owasp.benchmark.testcode.BenchmarkTest00674 278

org.owasp.benchmark.testcode.BenchmarkTest01961 278

org.owasp.benchmark.testcode.BenchmarkTest02633 278

org.owasp.benchmark.testcode.BenchmarkTest02730 278

org.owasp.benchmark.testcode.BenchmarkTest00305 268

org.owasp.benchmark.testcode.BenchmarkTest00411 268

org.owasp.benchmark.testcode.BenchmarkTest00559 268

org.owasp.benchmark.testcode.BenchmarkTest00569 268

org.owasp.benchmark.testcode.BenchmarkTest01941 268

org.owasp.benchmark.testcode.BenchmarkTest02148 268

Transaction wide Risk Index (TwRI)

enables easy identification of the

riskiset transactions within the

application

9 Assessment Report for training_82

3.3. Potential Point of Failures: Propagated Risk Index

Propagated Risk Index (PRI) is a measure of the riskiest artifacts or

objects of the application along the Health Factors of Robustness,

Performance and Security.

PRI takes into account the intrinsic risk of the component coupled

with the level of use of the given object in the transaction. It

systematically helps aggregate risk of the application in a relative

manner allowing for identification, prioritization, and ultimately

remediation of the riskiest objects.

The PRI number reflects the cummulative risk of the object based

on its relationships and interdependencies. The PRI is calculated as

a function of the rules violated, their weight/criticality, and the

frequency of the violation.

The Top 15 objects with the highest PRI are:

Artefact name PRI

Artefact one PRI value 1

Artefact two PRI value 2

Propagated Risk Index (PRI) enables

easy identification of the riskiset

objects/artifacts within the

application

10 Assessment Report for training_82

4. Measures of Security

Most security vulnerabilities result from poor coding and architectural practices such as SQL injection or cross-

site scripting. These are well documented in lists maintained by CWE http://cwe.mitre.org/, and CERT.

4.1. Top 25 CWE Rules
List of the Top 25 CWE rules that had any findings in this application

Metrics
Total

Violations

Added

Violations

Removed

Violations

CWE-79: Avoid cross-site scripting DOM vulnerabilities 541 20 98

CWE-78: Avoid OS command injection vulnerabilities 115 19 56

CWE-89: Avoid SQL injection vulnerabilities 233 27 25

CWE-91: Avoid XPath injection vulnerabilities 10 8 6

CWE-73: Avoid file path manipulation vulnerabilities 137 11 32

CWE-117: Avoid Log forging vulnerabilities 45 9 13

CWE-134: Avoid uncontrolled format string 99 17 22

CWE-90: Avoid LDAP injection vulnerabilities 14 6 4

4.2. Technical Criteria

Technical criterion name Grade Evolution

Architecture - Multi-Layers and Data Access 1.00 0 %

Architecture - Object-level Dependencies 3.25 0 %

Architecture - OS and Platform Independence 3.63 0 %

Architecture - Reuse 2.42 0 %

Complexity - Algorithmic and Control Structure Complexity 3.98 0 %

Complexity - Dynamic Instantiation 4.00 0 %

Complexity - OO Inheritance and Polymorphism 3.89 0 %

Complexity - SQL Queries 3.67 0 %

Complexity - Technical Complexity 3.00 0 %

Dead code (static) 3.29 0 %

Programming Practices - Error and Exception Handling 1.00 0 %

Programming Practices - OO Inheritance and Polymorphism 4.00 0 %

Programming Practices - Structuredness 2.20 0 %

Programming Practices - Unexpected Behavior 3.63 0 %

Secure Coding - Time and State 4.00 0 %

Volume - Number of Components 3.62 0 %

11 Assessment Report for training_82

4.3. Top Non Critical Violations

Rule Name # Violations

Avoid Artifacts with High Fan-Out 3,341

Avoid unreferenced Classes 2,744

Avoid Classes with High Coupling Between Objects 2,703

Avoid Too Many Copy Pasted Artifacts 2,482

Avoid declaring throwing an exception and not throwing it 2,307

Rule Name # Violations

Avoid Artifacts with High Fan-Out 3,341

Avoid unreferenced Classes 2,744

Avoid Classes with High Coupling Between Objects 2,703

Avoid Too Many Copy Pasted Artifacts 2,482

Avoid declaring throwing an exception and not throwing it 2,307

5. Appendix: Understanding Quality Indicators, Quality Rules

CAST AIP has 1000+ quality rules and each rule produces a grade. Depending on the impact, the grades are
aggregated into high level Indicators: Quality Indicators and Best Practices Indicators.

Each aggregation is a weighted average of the contributing metric grades where certain metric grades are
flagged critical, i.e. it is nearly a defect. We label these Critical Violations.

Quality Indicators

The structure, classification, and terminology are from the ISO 9126‐3 specification and the subsequent ISO
25000:2005 quality model. The main focus is on internal structural quality. Subcategories have been created to
handle specific areas like business application architecture and technical characteristics such as data access
and manipulation or the notion of transactions. The dependence tree between software quality characteristics
and their measurable attributes is represented in the following diagram, where each of the 5 characteristics
that matter for the user or owner of the business system depends on measurable attributes: Application
Architecture Practices, Coding Practices, Application Complexity, Documentation, Portability, and Technical &
Functional Volume.

Quality Indicator Description

Security A measure of the likelihood of potential security breaches due to poor coding and architectural
practices. This quantifies the risk of encountering critical vulnerabilities that damage the
business and provides a list of prevention measures.

TQI A Total Quality Index (TQI) is computed on all the measures made by CAST AIP.

Best Practices Indicators

Best Practice Description

Programming
Practices

Measures the level of compliance of the application to coding best practices. Compliance to
best practices reduces risks of failures in production and improves productivity through
increased readability and reduced debugging.

Architectural
Design

Measures the level of compliance of the application to software architecture and design rules.
Compliance to architecture rules improves productivity through better use of existing
frameworks and code as well as reduced debugging.

Documentation Measures the level of compliance of the application to code documentation best practices.
Compliance to documentation best practices improves productivity through increased
readability and faster understanding of source code.

The risk level is assessed according to the below scale:

Scale Risk Level

4 Low Risk

3 Moderate Risk

2 High Risk

1 Very High Risk

13 Assessment Report for training_82

6. Appendix: Importance of measuring all layers of an
application

Measuring the technical quality of business software applications is evolving from an art to a science with the

availability of software tools that automate the process of code analysis. However, it is critical to understand

that there are two categories of software quality with very different implications for operational performance.

The first category is Code Quality which measures individual or small collections of coded components written

in a single language and occupying a single tier (e.g., user interface, logic, or data) in an application. The second

category, Application Quality, analyzes the software across all of the application’s languages, tiers, and

technologies to measure how well all an application’s components come together to create its operational

performance and overall maintainability.

Although the code quality of individual components is important, by itself it will not ensure the overall quality

of the application. Quality is not an intrinsic property of code: the exact same piece of code can be excellent in

quality or highly dangerous depending on the context in which it operates. Ignoring the larger context in which

the code operates – the multitude of connections with other code, databases, middleware, and APIs – will often

generate a large number of false positives.

Today’s business applications are complex, built in multiple languages on multiple technologies. Even more

challenging, these applications usually interact with other applications built on different technologies. Analyzing

the quality of modern applications is monstrously complex and can only be accomplished with automated

software that analyzes the inner structure of all components and evaluates their interactions in the context of

the entire business application.

Typical application quality problems are listed below to clarify the distinction between application and code

quality. Performance testing alone is not sufficient to detect these application quality problems.

6.1. Bypassing the Architecture

Components in one tier of a multi-tier application are typically designed to access components in another tier

only through an intermediate “traffic management” component. Bypassing this traffic management component

will usually result in a cascade of problems.

6.2. Failure to Control Processing Volumes
Applications can behave erratically when they fail to control the amount of data or processing they allow. This

problem is often caused by a failure to incorporate controls in each of several different architectural tiers.

6.3. Application Resource Imbalances

When database resources in a connection pool are mismatched with the number of request threads from an

application, resource contention will block the threads until a resource becomes available. This ties up CPU

resources with the waiting threads and slows application response times.

6.4. Security Weaknesses
Applications are vulnerable to security attacks when they lack appropriate sanitization checks on user inputs in

all relevant tiers of the application.

14 Assessment Report for training_82

6.5. Lack of Defensive Mechanisms
Since the developers implementing one tier cannot anticipate every situation, they must implement defensive

code that sustains the application’s performance in the face of stresses or failures affecting other tiers. Tiers

that lack these defensive structures are fragile because they fail to protect themselves from problems in their

interaction with other tiers. Each of these application quality problems will result in unpredictable application

performance, business disruption, data corruption, and make it difficult to alter the application in response to

pressing business needs. Reliably detecting these problems requires an analysis of each application component

in the context of the entire application as a whole – an evaluation of application rather than code quality.

