

CORE APPLICATION STRUCTURAL

QUALITY

EXECUTIVE REPORT

Prepared for Acme Financial Services by:

John Doe, Software Consulting, Inc (SCI)

September 2016

Core Applications Structural Quality | CAST AIP Report for September 2016

2

Table

of

Contents

1. Core Applications Summary .. 3

2. Technical Debt ... 5

3. Risk Profile of Core Applications ... 6

4. Team Performance ... 12

5. Appendix – Assessment Approach Overview ... 14

Core Applications Structural Quality | CAST AIP Report for September 2016

3

1. Core Applications Summary

Table 1: Summary of applications analyzed

Application Description
Production

Date
Version
Number

Releases
per Year

Sourcing
Method

Number of
End-Users

Cost of
Outage

ETS Equity trading system for

all equity trading

products

01/01/2000 6.2 1 (4 minor

releases)

In-house 10,000 $$$$$

FIS Fixed income system for

trading of fixed income

products

07/01/2003 4.3 1 (4 minor

releases)

Outsourced 6,000 $$$$$

Table 2: Summary of application characteristics

Quality Characteristics ETS FIS Size Characteristics ETS FIS

Total Quality Index (TQI) 2.73 2.93 Technical Size

Transferability 2.68 3.08 – kLOC 51 69

Changeability 2.99 3.19 – Files 425 674

Robustness 2.83 3.03 Functional Weight

Performance 2.68 3.08 – BFP 1895 2640

Security 2.53 2.93 – FP (Est.) 358 459

Critical Violations 1300 900 – Total CC 8560 12232

– per File 3.05 1.34 Technologies Top 5 in
kLOC

– per kLOC 25.4 13.0 – JEE 0 44

– per Application 433 450 – C++ 30 5

Complex Objects 44 52 – Cobol 5 0

– w/ violations 38 26 – SQL 3 2

 –.Net 1 1

 – Powerbuilder 1 1

Core Applications Structural Quality | CAST AIP Report for September 2016

4

1.1 Overview of change in health of Core Applications

The Total Quality Index (TQI) and Health Factors (Robustness, Performance, Security, Transferability and

Changeability) analyzed by the CAST AIP for Core Applications are:

Figure 1: ETS Health Factor Scores Figure 2: FIS Health Factor Scores

1.2 Benchmarking Analysis

2

2.2

2.4

2.6

2.8

3

3.2

T1 T2 T3 T4

TQI Robustness

Performance Security

Transferability Changeability

2

2.2

2.4

2.6

2.8

3

3.2

T1 T2 T3 T4

TQI Robustness

Performance Security

Transferability Changeability

• Benchmarking analysis with similar applications from

Financial Services industry showed that FIS is on par or

better than the industry average on Risk parameter, while

ETS is below

• ETS is being reviewed for sun setting by the Architecture

Review Board

• Remediation plan has been prepared for ETS to mitigate

any major risks while a decision is being made on the new

green field project

Figure 3: Cost – Risk Matrix of
CAST AIP Health Factors

Core Applications Structural Quality | CAST AIP Report for September 2016

5

2. Technical Debt

2.1 Technical Debt Calculation Assumptions

Technical Debt is calculated in this report as the cost of fixing the structural quality problems in an application

that, if left unfixed, put the business at serious risk. AIP categorizes violations into low, medium and high

severity. The Technical Debt calculation assumes that only 50% of high-severity violations, 25% of medium-

severity violations, and 10% of low-severity violations require fixing to prevent business disruption. With this in

mind, the formula for technical debt becomes:

TECHNICAL DEBT = [(10% * L) + (20% * M) + (50% * H)] C * T]

Where:

• L is the Number of Low-Severity Violations

• M the Number of Medium-Severity Violations

• H the Number of High-Severity Violations

• C the Cost to Fix a Violation ($ per Hour); assumed to be $75.00 per hour

• T the Time to Fix a Violation (Number of Hours); assumed to be 1 hour per violation

• In the case of Core Applications, the values are: L = 1843; M = 4847; H = 1359

• TECHNICAL DEBT for Core Applications

2.2 Technical Debt Evolution Since Last Release

Figure 4: Technical debt evolution

T3 T4 Remediated Added

$805,435 $885,360 $102,585 $137,510

FIS

ETS

Core Applications Structural Quality | CAST AIP Report for September 2016

6

3. Risk Profile of Core Applications

3.1 Violations per Core Application

We identified over 8000 violations of 221 quality rules in Core Applications. Not all of these violations have the

same impact on the level of risk for the Core Applications. The table on the left shows the total number of

violations has decreased by 9% since T3. On the right we have the critical violations which increased 11%

since T3.

Table 3: Total violations by release Table 4: Critical violations by release

All Violations ETS FIS Critical Violation ETS FIS

T1 7,600 5,000 T1 1,500 1,000

T2 7,200 5,000 T2 1,300 800

T3 7,000 5,000 T3 900 800

T4 5,500 4,000 T4 800 800

9% reduction 11% increase

3.2 Violations per Application Layer

2200 of these violations are related to the 14 quality rules that are flagged as critical. Looking at the distribution

of those violations it appears that the database layer and the presentation layer are concentrating 85% of those

violations in 11 rules and the database layer is the one that reveals the highest number of violations per rule

violated.

Figure 7: Violations by application layer

620

140
30 40 40 30

750

280

70 110 50 40

ETS

FIS

Core Applications Structural Quality | CAST AIP Report for September 2016

7

3.3 Aging Analysis of Critical Violations

Table 5: Aging analysis of critical violations

Application Current New Existing

 TOTAL T4 T3 T2 T1

ETS 1300 250 410 110 530

FIS 900 170 230 280 220

3.4 Potential Points of Failure

3.4.1 Propagated Risk Index

Propagated Risk Index (PRI) is a measurement of the riskiest artifacts or objects of the application based on

their contribution to application health and their impact on the rest of the application. The Top 10 objects with

the highest PRI are:

Table 6: Top 10 objects with highest PRI

Object PRI

[xxx.csi.architecture.common.iCSIException].xxx.csi.architecture.common.CSIExceptio

nManager.GetResolutionGin

214,692,660

[xxx.csi.architecture.common.iCSIException].xxx.csi.architecture.common.CSIExceptio

nManager.GetResolutionDetails

213,041,178

[xxxx.csi.express.common.iChbcommon].xxxx.csi.express.common.fclsOffering.Update

Offering

110,865,755

[xxx.csi.architecture.common.iDRL].xxx.csi.architecture.common.iDRL.FileExists 38,774,778

[xxx.csi.architecture.common.iDRL].xxx.csi.architecture.common.iDRL.FileUpdate 38,247,230

[xxx.csi.architecture.common.iQuery].xxx.csi.architecture.common.iQuery.GetInformix

ErrorDetails

30,796,850

[xxx.csi.architecture.common.ICSILogin].xxx.csi.architecture.common.ICSILogin.StarSC

IILogin

28,215,600

[xxx.csi.architecture.common.iQuery].xxx.csi.architecture.common.iQuery.ResetConne

ction

25,157,727

[xxx.csi.architecture.common.iQuery].xxx.csi.architecture.common.iQuery.GetInformix

ErrorMsg

24,637,480

GAIC04\SQLGAIC.tcis..claimtbl 692,266

http://localhost:8080/CSIX_CHUBB/?frame=FRAME_PORTAL_OBJECT_DETAILS&object=588182&snapshot=3&treeobject=380488

Core Applications Structural Quality | CAST AIP Report for September 2016

8

3.4.2 Transaction Risk Index

Transaction Risk Index (TRI) is an indicator of the riskiest transactions of the application. The Top 10 objects

with the highest TRI are:

Table 7: Top 10 objects with the highest TRI

Transaction TRI

frmBookPost 1,229,694,195

frmBindBook 1,169,694,195

frmMain 755,357,798

frm2Main 555,357,798

frmPurchase 302,730,366

frmOrganizeBehavior 301,730,366

mdiOpport 224,471,958

dbProdSheets 209,118,738

frmUpdateTransaction 121,471,958

dbCustTransaction 106,118,738

In summary, the assessment of Core Applications reveals several real areas, i.e. violations in quality areas for

the application and database, objects with highest PRI, and several areas to reduce TRI for improvement to

reduce both the cost and risk associated with the quality of the application.

http://localhost:8080/CSIX_CHUBB/?display=1&frame=FRAME_PORTAL_TRANSACTION_DETAIL_VIEW&metric=60013&object=380410&snapshot=3&treeobject=760478
http://localhost:8080/CSIX_CHUBB/?display=1&frame=FRAME_PORTAL_TRANSACTION_DETAIL_VIEW&metric=60013&object=380410&snapshot=3&treeobject=760455
http://localhost:8080/CSIX_CHUBB/?display=1&frame=FRAME_PORTAL_TRANSACTION_DETAIL_VIEW&metric=60013&object=380410&snapshot=3&treeobject=760455
http://localhost:8080/CSIX_CHUBB/?display=1&frame=FRAME_PORTAL_TRANSACTION_DETAIL_VIEW&metric=60013&object=380410&snapshot=3&treeobject=760559
http://localhost:8080/CSIX_CHUBB/?display=1&frame=FRAME_PORTAL_TRANSACTION_DETAIL_VIEW&metric=60013&object=380410&snapshot=3&treeobject=587260
http://localhost:8080/CSIX_CHUBB/?display=1&frame=FRAME_PORTAL_TRANSACTION_DETAIL_VIEW&metric=60013&object=380410&snapshot=3&treeobject=760559

Core Applications Structural Quality | CAST AIP Report for September 2016

9

3.5 Percent Change in Health Factors from T3 to T4

Figure 8: Percentage of change in health factors from previous release

There was slight deteoration in the overall Health Factors in the application compared to the previous release.

The Health Factors of Changeability, Robustness and Security continue to be of concern. The number of

additions for this release futher contributing to the risk and increasing the total cost of ownership (TCO) of the

application.

• Performance improved at the top end of expectation

• Changeability, Robustness and Security took a larger drop than expected

• Changebility may have been compromised with all the changes in the latest release

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Transferability Changeability Robustness Performance Security

Percentage of Change

Expected

Tolerance =

0.20%

Based on level of

changes between

T3 to T4

Core Applications Structural Quality | CAST AIP Report for September 2016

10

3.6 Quick Wins to Improve Application Health

3.7 The Top Quick Win for Better Performance Efficiency

Table 8: Quick wins for improving performance

Criticality Weight Grade Name # Violation #Ok

 7 3.25 Avoid Cursors inside a loop 7 1084

 7 3.25 Avoid using SQL queries inside a loop 37 1143

 4 1 Avoid direct definition of JavaScript Functions in a
Web page

623 1024

 4 1 EJB Session access through their local interface 4 1

 1 1 Avoid direct definition of JavaScript Functions in a
Web page

623 1024

 9 1.57 Avoid SQL queries that no index can support 335 660

 8 2.84 Avoid String concatenation in loops 40 7465

 8 4 Avoid artifacts having recursive calls 44 10865

 4 3.65 Avoid using Dynamic Instantiation 38 896

 4 3.99 Avoid using HashTable 63 7442

 1 1.43 Avoid to use Log.debug() without calling
Log.isDebugEnables()

355 190

3.8 The Top Quick Win For Better Resilience

Table 9: Quick wins for improving resilience

Criticality Weight Grade Name # Violation #Ok

 8 1 Avoid Functions and Procedures doing an Insert,
Update, Delete, Create Table or XX

648 130

 6 3.46 Avoid empty catch blocks 92 9945

 9 4 Avoid thread creation for application running on
application server

2 7690

 8 3.23 Avoid double checking locking 9 37

 8 3.85 Never exit a finally block with a return, break,
continue or throw

4 473

 6 4 Avoid empty finally blocks 20 10368

 5 4 Check usage of ‘==’ and ‘!=’ on objects 48 7519

 1 1.31 Avoid Functions and Procedures doing an Insert,
Update or Delete without XX

284 494

 0 2.21 Avoid using ‘System.err’ and System.out’ within a try
catch block

118 7387

 0 1.75 Avoid using ‘System.printStackTrace()’ within a try
catch block

378 7127

Core Applications Structural Quality | CAST AIP Report for September 2016

11

3.9 The Top Quick Win For Better Security

Table 10: Quick wins for improving security

Criticality Weight Grade Name # Violation #Ok

 10 2.5 Avoid cross-site scripting vulnerabilities 8 53

 10 2.5 Avoid file path manipulation vulnerabilities 1 60

 9 1.39 Avoid instance of methods that override or implement
Object.equals(), XX

9 10

 9 3.78 Avoid using fields (non Static final) from other
Classes

168 7337

 8 2.17 Favor PreparedStatement or CallableStatement over
Statement

50 283

 8 1 Avoid fields in servlet classes that are not final static 16 1

 4 3.78 Avoid using fields (non Static final) from other
Classes

168 7337

3.10 The Top Quick Win For Better Maintainability

Table 11: Quick wins for improving maintainability

Criticality Weight Grade Name # Violation #Ok

 9 2 Avoid classes overriding only equals() or only
hashCode()

5 8

 9 2.75 Suspicious similar methods name or signature in an
inheritance tree

17 1230

 8 2.34 Avoid Artifacts with high Commented-out Code
Lines/Code Lines ratio

896 10672

 8 4 Avoid Artifacts having recursive calls 44 10865

 8 3.03 Avoid having multiple Artifacts inserting data on same
SQL table

70 1015

 8 3.36 Avoid having multiple Artifacts updating data on same
SQL table

41 1044

 7 3.9 Avoid Artifacts with High Essential Complexity 146 11071

 7 3.63 Avoid having multiple Artifacts deleting data on the
same SQL table

36 1049

 6 3.82 Avoid Artifacts with High Depth of Code 134 11083

 6 3.01 Avoid Artifacts with High RAW SQL Complexity 85 1095

Core Applications Structural Quality | CAST AIP Report for September 2016

12

4. Team Performance

4.1 Estimated Effort – What it should have cost

The following chart indicates a reverse estimate of how many man days have been expended in enhancing

the core applications:

Figure 9: Estimated effort based on the code added/modified/deleted

These data are calculated by combining a detailed view of all the components added, removed, or changed

across the applications, sorted by complexity and technology. A complexity-technology-change type matrix is

calibrated to reflect historical effort in man days. It is a rough estimate by definition, but it provides a good order

of magnitude to compare to reported actuals. Major differences represent areas for further investigation.

4.2 Maturity Level of Software Engineering Competency

There are three primary areas of competency: Programming Practices, Architectural Deisgn, and

Documentation that we examined. The core applications being measured demonstrate some deficiencies in all

three areas.

Figure 10: Software engineering maturity level (1 – Low; 4 – High)

1

2

3

4
Programming Practices

Architectural DesignDocumentation

2000

1500

1000

500

T1 T2 T3 T4 TOTAL

FIS

ETS

Man hours

Core Applications Structural Quality | CAST AIP Report for September 2016

13

4.2.1 Scores for Best Practices

Table 12: Best practices scores

Best Practices Grade Description

Programming
Practices

2.85 Measures the level of compliance of the application to coding best practices.
Compliance to best practices reduces risks of failures in production and
improves productivity through increased readability and reduced debugging.

Architectural
Design

2.21 Measures the level of compliance of the application to software architecture
and design rules. Compliance to architecture rules improves productivity
through better use of existing frameworks and code and reduced debugging.

Documentation 2.06 Measures the level of compliance of the application to code documentation
best practices. Compliance to documentation best practices improves
productivity through increased readability and faster understanding of
source code.

4.2.2 Software Weakness Injection Rate

Figure 11: New critical violations introduced per man-day estimate of effort

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T1 T2 T3 T4

Historical

Benchmark

Core Applications Structural Quality | CAST AIP Report for September 2016

14

5. Appendix – Assessment Approach Overview

 This assessment is an effort to determine the overall

quality of the ACBA application and identify any risks

that may be inherent in the application towards

ACME Corp’s objectives of extending the application.

This assessment looks at the implementation of

CORE APPLICATIONS to determine whether the

application is constructed according to industry best

practices, follows best practices for software

engineering, and is maintainable. See Table 1.

This assessment is focused solely on the CORE

APPLICATIONS and the SQL database with no view

to functionality provided by backend services.

SCI uses the best-of-breed automated analysis

platform, CAST AIP; to automatically scan the entire

code base as well as having expert J2EE architects

review the architecture, design, and code against

current industry practices and standard approaches.

Figure 12: Assessment approach

Core Applications Structural Quality | CAST AIP Report for September 2016

15

5.1 Automated Analysis

The CAST AIP is the industry leading automated code analysis platform, with coverage of all major

development tools and languages. CAST AIP automatically scans and analyzes all of the source code and

database elements that are part of an Enterprise system. CAST AIP applies over 900 metrics based on

standards and measurements developed by the Software Engineering Institute (SEI), International Standards

Organization (ISO), Consortium for IT Software Quality (CISQ), and Institute of Electrical and Electronics

Engineers (IEEE). These metrics objectively measure software for the quality and quantity of work.

CAST AIP provides Application Analysts the ability to examine and drill down on critical application

characteristics and attributes. The primary Application Health Factors that are addressed are:

Table 13: CAST AIP health factor descriptions and business benefits of measuring them

Health Factor Description Example business benefits

Transferability Attributes that allow new
teams or members to
quickly understand and
work with an application

• Reduces inefficiency in transferring application work
between teams

• Reduces learning curves

• Reduces lock-in to suppliers

Changeability Attributes that make an
application easier and
quicker to modify

• Improves business agility in responding to markets or
customers

• Reduces cost of ownership by reducing modification
effort

Robustness Attributes that affect the
stability of the application
and the likelihood of
introducing defects when
modifying it

• Improves availability of the business function or
service

• Reduces risk of loss due to operational malfunction

• Reduces cost of application ownership by reducing
rework

Performance Attributes that affect the
performance of an
application

• Reduces risk of losing customers from poor service or
response

• Improves productivity of those who use the
application

• Increases speed of making decisions and providing
information

• Improves ability to scale application to support
business growth

Security Attributes that affect an
application’s ability to
prevent unauthorized
intrusions

• Improves protection of competitive information-based
assets

• Reduces risk of loss in customer confidence or
financial damages

• Improves compliance with security-related standards
and mandates

Core Applications Structural Quality | CAST AIP Report for September 2016

16

5.2 Architectural Analysis

 SCI reviewed the overall design and architecture of

the application along with the specific implementation

choices embedded in the application code. These

experienced J2EE Architects, with the help of

“Architecture Checker” feature of CAST AIP platform,

evaluated the architecture of CORE APPLICATIONS

against technology patterns and best practices to

evaluate the quality and long-term viability of the

application. The review considered factors such as

the ability of developers to understand and maintain

the application code, the flexibility and expandability

of the system, the reuse of existing libraries, and the

use of standard techniques. While reviewing the

code, the architects applied their hard-earned wisdom

to identify common performance, security, and

maintenance problems.

By considering alternative technologies and

techniques available at the time of original

development and at the time of assessment, and

incorporating an understanding of the goals for the

application, SCI provides a balanced assessment of

whether the application under review is suitable as a

strategic platform and the level of change necessary

to achieve the enterprise goals.

In this Structural Quality Gate, SCI focuses particular

attention on identifying risks that would prevent

CORE APPLICATIONS from becoming a highly

scalable, extensible mission-critical application, and

whether the application follows industry-standard

software engineering and security principles.

CAST AIP Architecture Checker,

helps translate clients target

architecture intended at application

design time into policies that can be

tested during source code analysis.

Any code developed that does not

comply with the intended

architecture is flaged for review and

correction.

Figure 13: Overview of architectural
analysis

GUI Process Business Data

Common

Log

Exception

Correct code Incorrect code

Core Applications Structural Quality | CAST AIP Report for September 2016

17

5.2.1 Propagated Risk Index Definition

 SCI reviewed the overall design and architecture of

the application along with the specific implementation

choices embedded in the application code. These

experienced J2EE Architects, with the help of

“Architecture Checker” feature of CAST AIP platform,

evaluated the architecture of CORE APPLICATIONS

against technology patterns and best practices to

evaluate the quality and long term viability of the

application. The review considered factors such as

the ability of developers to understand and maintain

the application code, the flexibility and expandability

of the system, the reuse of existing libraries, and the

use of standard techniques. While reviewing the

code, the architects applied their hard-earned wisdom

to identify common performance, security, and

maintenance problems.

By considering alternative technologies and

techniques available at the time of original

development and at the time of assessment, and

incorporating an understanding of the goals for the

application, SCI provides a balanced assessment of

whether the application under review is suitable as a

strategic platform and the level of change necessary

to achieve the enterprise goals.

In this Structural Quality Gate, SCI focuses particular

attention on identifying risks that would prevent

CORE APPLICATIONS from becoming a highly

scalable, extensible mission-critical application, and

whether the application follows industry-standard

software engineering and security principles.

Propagated Risk Index (PRI) enables

easy identification of the riskiset

objects/artifacts within the

application

Figure 14: Overview of Propagated
Risk Index (PRI)

The red object (above arrow) in this

illustration has higher PRI because of
more objects which depend on it

Core Applications Structural Quality | CAST AIP Report for September 2016

18

5.2.2 Transaction Risk Index Definition

 Transaction Risk Index (TRI) is an indicator of the

riskiest transactions of the application. The TRI

number reflects the cumulative risk of the transaction

based on the risk in the individual objects contributing

to the transaction.

The TRI is calculated as a function of the rules

violated, their weight/criticality, and the frequency of

the violation across all objects in the path of the

transaction.

TRI is a powerful metric to identify, prioritize and

ultimately remediate riskiest transactions and their

objects.

Transaction Risk Index (TRI)

enables easy identification of the

riskiset transactions within the

application

Figure 15: Overview of Transaction
Risk Index (TRI)

The transaction (above arrow) in this illustration has
higher TRI because of the more risky objects within it

Core Applications Structural Quality | CAST AIP Report for September 2016

19

5.3 The CAST Application Intelligence Platform

CAST plugs into all the major SCM systems, or can take source code in whatever format it is maintained in the

organization. Source code is then processed and stored in the CAST Knowledge Base as metadata. That

metadata then forms the basis for all the analysis and information provided by the CAST AI Platform. CAST

looks at the entire application – even legacy components, packaged app customizations, and of course all the

modern distributed technology environments. Data from third party code analyzers (like open source analyzers)

can be integrated into CAST knowledge base and displayed in the AIP dashboards.

Figure 16: Working with CAST AIP

5.4 The CAST Quality Model

CAST AIP can apply over 1000 metrics based on standards and measurements developed by the Software

Engineering Institute (SEI), International Standards Organization (ISO), Center for Software Engineering, and

Institute of Electrical and Electronics Engineers (IEEE), R&D compiler and RDBMS, publishers, all sorts of

literatures and more recently, work done by the newly created Consortium for IT Software Quality, a child of the

SEI and OMG partnership. These metrics objectively measure any complex business system, structurally

speaking.

